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Abstract

As LLMs are deployed in knowledge-intensive
settings (e.g., surgery, astronomy, therapy),
users expect not just answers, but also mean-
ingful explanations for those answers. In these
settings, users are often domain experts (e.g.,
doctors, astrophysicists, psychologists) who re-
quire confidence that a model’s explanation re-
flects expert-level reasoning. However, current
evaluation schemes primarily emphasize plausi-
bility or internal faithfulness of the explanation,
often neglecting whether the content of the ex-
planation truly aligns with expert intuition. We
formalize expert alignment as a criterion for
evaluating explanations with T-FIX, a bench-
mark spanning seven knowledge-intensive do-
mains. T-FIX includes datasets and novel align-
ment metrics developed in collaboration with
domain experts, so an LLM’s explanations can
be scored directly against expert judgment.1

1 Introduction

LLMs are increasingly used for domain-specific
tasks, which require substantial background knowl-
edge from specialized fields. It is foreseeable that
LLM-powered systems will soon assist in high-
stakes environments such as operating rooms, as-
tronomical observatories, and therapeutic settings.

For LLMs to be trustworthy and reliable in these
critical applications, users require not only correct
answers but also good explanations (Rudin, 2019;
Pedreschi et al., 2019).

What constitutes a “good explanation”? This
largely depends on the explanation’s target audi-
ence (Ribera and Lapedriza, 2019; Sokol and Flach,
2020). As LLMs are increasingly adopted for spe-
cialized tasks like surgical assistance or supernova
analysis, the primary users are often domain ex-
perts, such as doctors and astrophysicists. Conse-
quently, a “good explanation” in these specialized

1https://anonymous.4open.science/r/
FIX-2-BE33/

Figure 1: Most current evaluations for LLM explana-
tions consider two dimensions: the overall plausibility
and the faithfulness to the reasoning process. However,
a crucial third dimension, expert alignment, asks: Does
the LLM reason like a domain expert would? For ex-
ample, an LLM correctly predicts sepsis risk with a
plausible, faithful explanation, but because the explana-
tion emphasizes features that clinicians rarely use for
sepsis diagnosis, the expert alignment score is low.

contexts must offer insights that are valuable and
interpretable to these domain experts.

Existing evaluations of LLM explanations pre-
dominantly focus on two dimensions: (1) plausibil-
ity, ensuring that the answer logically follows from
the provided explanation; and (2) faithfulness, veri-
fying that the answer accurately reflects the LLM’s
actual reasoning process. (Zhou et al., 2021; Agar-
wal et al., 2024; Parcalabescu and Frank, 2023).

While these dimensions are necessary, they are
not sufficient for knowledge-intensive applications.
Domain experts often need highly specific informa-

https://anonymous.4open.science/r/FIX-2-BE33/
https://anonymous.4open.science/r/FIX-2-BE33/


Figure 2: An overview of the T-FIX construction process. For each dataset, we first establish expert alignment
criteria – features deemed important by domain experts for a specific task – through collaboration with these experts
and LLM-based deep research tools. These criteria form the basis of the T-FIX evaluation pipeline, which processes
an LLM-generated explanation to output an expert alignment score. A high score suggests the explanation reflects
reasoning aligned with domain experts (i.e., the LLM “thinks like an expert”), while a low score indicates the
explanation may rely on aspects that experts would deem irrelevant.

tion regarding how a prediction was derived (Wang
and Yin, 2021), particularly whether the LLM con-
sidered aspects of the input that they themselves
deem critical.

To address this, we propose a third dimension for
evaluating LLM-generated explanations: Expert
Alignment. This dimension measures the extent to
which an LLM-generated explanation for a given
input and prediction focuses on criteria that a do-
main expert would deem important when making
the same prediction.

An LLM can generate a correct answer with a
plausible and faithful explanation, yet still rely on
features that domain experts consider irrelevant or
low-priority, as shown in Figure 1. Such misaligned
reasoning can undermine trust in the model, even
when the output is technically correct.

While alignment with domain expert reasoning
has been explored in machine learning, for exam-
ple, by identifying meaningful feature groups (Jin
et al., 2024), such approaches are primarily suited
for interpreting traditional, non-generative neural
networks. Modern LLMs typically generate free-
form text explanations that are not directly based on
these explicit feature groups. To our knowledge, no
benchmark currently exists to evaluate the expert
alignment of such free-form textual explanations.

To fill this gap, we introduce the T-FIX bench-
mark: a collection of datasets spanning seven
distinct domains, accompanied by an evaluation
framework. Designed in collaboration with domain
experts, T-FIX assesses the expert alignment of
LLM-generated explanations within each domain.

Our contributions are as follows:

• We introduce expert alignment as a desired
attribute of LLM-generated explanations and
create T-FIX, the first benchmark designed to
evaluate this.

• We release a pipeline to evaluate how well any
LLM “thinks like an expert,” designed to be
easily extendable to new domains.

• We demonstrate that current LLMs often
struggle to generate explanations that align
with expert intuition, highlighting this as a
significant area for their future improvement.

• We find that LLMs generally perform better
when they reason over multiple expert crite-
ria, yet modern high-performing LLMs do not
appear to rely on expert reasoning.

2 Expert Alignment Criteria

The development of the T-FIX benchmark was a
highly collaborative and interdisciplinary process.
For each of our seven domains (see Figure 4), our
first step was to identify the expert criteria most
relevant to making a prediction, detailed in the
left of Figure 2.

When answering knowledge-intensive questions
like “Will this patient develop sepsis in the next
12 hours?” or “What kind of supernova produced
these wavelengths?”, doctors and astrophysicists
rely on domain-specific heuristics, prioritizing cer-
tain features over others based on training and ex-
perience. For instance, in sepsis classification, an
experienced clinician would typically emphasize



Figure 3: Our T-FIX pipeline. To evaluate an LLM-generated explanation, we first decompose it into atomic claims.
Next, we filter out irrelevant claims, such as unsupported or speculative statements. Each remaining claim is then
scored against the domain-specific expert alignment criteria on a 0–1 scale: a score of 1 indicates perfect overlap
with at least one criterion, while 0 indicates no overlap. Filtered-out claims are automatically assigned a score of 0.
We compute the final expert-alignment score for the explanation by averaging across all claim scores.

features like advanced age and hypotension, while
assigning lower importance to signals like glucose
levels or patient demeanor, which are less directly
indicative of sepsis risk.

Thus, an LLM that makes the correct prediction
by attending to age and hypotension is more expert-
aligned than one that arrives at the same answer by
focusing on glucose and demeanor.

We define the subset of features that experts pri-
oritize most highly when performing a task as the
task’s expert alignment criteria.

Step 1: Surveying the Field. To seed our ini-
tial list of expert criteria, we prompt OpenAI’s o3
model to perform a comprehensive literature re-
view of the relevant field. Each prompt includes a
task description, example input-output pairs from
the dataset, and instructions to generate a list of
criteria considered important for performing the
task – accompanied by reputable citations.

We begin with this deep research approach to
avoid over-reliance on any single expert’s perspec-
tive. Our goal is to synthesize insights from a broad
array of books, journals, and academic publications
to produce as comprehensive a list as possible.

Step 2: Iteration with Domain Experts. To
validate and improve the output from Step 1, we
present the preliminary criteria list to a domain ex-
pert (see Figure 4 for details on each expert per
domain). We ask the expert to (1) remove any in-
correct or irrelevant criteria, (2) add any important
ones that were missed, and (3) ensure that the list
reflects a consensus that their peers would agree
with. The expert then refines the list until it accu-

rately captures the field’s knowledge.
An example criterion for sepsis classification

is as follows: Advanced age (over 65 years)

markedly increases susceptibility to rapid sepsis

progression and higher mortality after infection.

All Deep Research prompt templates and final
expert alignment criteria lists for all domains are
available in our GitHub repository.

3 T-FIX Pipeline

LLM-generated explanations contain a mix of rea-
soning steps – some aligned with expert judgment,
and others based on irrelevant information.

To systematically evaluate such complex expla-
nations, we first break them down into atomic
claims, or standalone “features” that can be indi-
vidually assessed for expert alignment. By scoring
each feature separately and then aggregating these
scores, we can compute an overall expert alignment
score for the full explanation. See Figure 3 for an
example of this multi-step process.

Our T-FIX pipeline for evaluating expert align-
ment consists of three main components:

1. Claim Extraction: Decomposing a free-form
explanation into standalone, atomic claims.

2. Relevancy Filtering: Removing claims that
are unsupported, speculative, or otherwise ir-
relevant to the model’s prediction.

3. Alignment Scoring: Measuring the degree
of overlap between each remaining claim and
domain expert criteria on a 0–1 scale.

We build our pipeline using GPT-4o, as it is both
fast and cost-effective.



Figure 4: Overview of datasets and domains in T-FIX. We evaluate LLM expert alignment across seven diverse
domains, spanning cosmology, psychology, and medicine. For each dataset, we highlight the motivating task,
input–output format, representative example, and the expert responsible for validating alignment criteria. The final
row summarizes the expert alignment criteria used for scoring explanations in each domain. The column colors
reflect dataset modality: blue indicates vision, yellow indicates language, and pink indicates time-series.

3.1 Stage 1: Atomic Claim Extraction

Given a free-form text explanation accompanying
an LLM’s prediction, our first goal is to identify and
extract the distinct reasoning steps, i.e. “features”,
used by the LLM. We achieve this by decomposing
the explanation into atomic claims.

An atomic claim is defined as a self-contained,
indivisible statement that conveys a single veri-

fiable fact, and can be fully understood without
reference to the surrounding context.

To extract atomic claims, we adapt prompting
techniques from the claim decomposition literature
(Wanner et al., 2024; Gunjal and Durrett, 2024)
and prompt GPT-4o to transform a free-form expla-
nation into a list of fully decontextualized atomic
claims. We treat each claim as representing a single
“feature” in the LLM’s explanation.



3.2 Stage 2: Relevancy Filtering

Not all extracted claims contribute meaningfully
to expert reasoning. Some may be unsupported
(i.e., references to content not present in the input),
speculative (i.e., unfounded hypotheses), or oth-
erwise irrelevant (e.g., repeating the model’s final
prediction or citing unrelated information).

Given that domain experts heavily prefer suc-
cinct, informative explanations, we prompt GPT-
4o to remove such noisy claims by evaluating each
atomic claim based on the original input. A claim
is retained if it satisfies the following two criteria:

(1) Clearly grounded in and supported by the
input (i.e., not unfounded or speculative)

(2) Directly contributes to explaining why the
model made its prediction.

On average, 72% of the claims generated in
Stage 1 pass this relevancy filter and are carried
forward for alignment scoring.

3.3 Stage 3: Alignment Scoring

In the final stage of our pipeline, we evaluate
each retained atomic claim by comparing it to the
domain-specific expert alignment criteria (see Sec-
tion 2). This step quantifies how closely the rea-
soning in the LLM’s explanation reflects expert
judgment.

Given an atomic claim and a list of expert cri-
teria, we prompt GPT-4o to measure the claim’s
expert alignment in two steps:

1. Identify the most aligned expert criterion.
The model selects the criterion whose focus
and intent best match the core idea of the
atomic claim. The model may also indicate
that no criteria align with the claim.

2. Assign an alignment score (0-1). The model
scores how well the claim aligns with the cho-
sen criterion: 1 for complete overlap, and 0 for
no alignment. Intermediate scores reflect par-
tial alignment, such as when the claim touches
on a relevant concept but lacks specificity. See
Table 1 for details on intermediate scores.

For example, consider the expert criterion for
sepsis classification: Advanced age (over 65 years).
The claim “The patient is at risk as they are

72 years old” would receive an alignment score of
1.0, as it directly and fully supports the criterion.
In contrast, the claim “The patient is at risk as

they are 37” may receive a score of 0.2: while it
discusses patient age, the specific value does not

Score Range Meaning

(0, 0.25] The claim references an unrelated or
misleading feature, or misinterprets the
criterion’s meaning

(0.25, 0.5] The claim loosely refers to the correct
concept but lacks key details, thresholds,
or uses vague language

(0.5, 0.75] The claim references a relevant feature
but only partially reflects the criterion
(e.g., omits thresholds, is overly general,
contains noise)

(0.75, 1] The claim is specific, directly relevant,
and fully captures the meaning and in-
tent of the expert criterion

Table 1: Interpretation of alignment score ranges used
in scoring atomic claims against expert criteria.

align with the expert threshold for elevated risk. In
contrast, the claim “The patient is NOT at risk as

they are 37” would also receive a score of 1.0.
Examples of claims with high and low alignment

for each domain, along with rationale for why those
scores were assigned, are provided in Table A3.

3.4 Final Aggregation

We assign an alignment score of 0 to the claims that
were filtered out or did not align with any criteria.
This ensures LLM-generated explanations are pe-
nalized for unsupported or speculative statements,
irrelevant information, and misaligned reasoning.
We then average the alignment scores across all
claims to produce a final expert alignment score for
the explanation.

The prompts for all three stages can be found in
Appendix B and in our Github repository.

4 Pipeline Validation

Given our pipeline relies on multiple curated GPT-
4o prompts, we want to ensure that the extracted
and filtered claims are accurate, and that the final
alignment scores match domain expert intuition.

To validate the outputs at each stage, we conduct
an annotation study for 35 examples (5 per domain).
This includes 295 extracted claims and 211 aligned
claims. We recruit a total of six annotators, with
two annotators per example2.

Validating atomic claim extraction. Annotators
receive the original explanation and its extracted
atomic claims from Stage 1. They classify each

2Annotators are PhD students who study machine learning
at an American university and are previously familiar with
evaluating LLM outputs for given criteria.



Pipeline Stage N Accuracy Cohen’s κ

Claim Extraction 35 0.943 0.717
Relevancy Filtering 295 0.871 0.402
Expert Alignment 211 0.923 0.405

Table 2: Pipeline validation: Accuracy averaged across
all T-FIX domains and annotator agreement – Cohen’s
κ for each stage in our pipeline. Domain-specific statis-
tics are provided in Table A2.

extraction as: (A) Perfect – all claims correctly ex-
tracted, (B) Partially accurate – 1–3 claims missing
or incorrect, or (C) Incorrect – 3+ claims missing
or incorrect. We convert these labels to accuracy
scores: A = 1.0, B = 0.5, C = 0.0.

Validating relevancy filtering. Annotators re-
view the explanation, extracted claims, and filtered
claims from Stage 2. For each claim, they assess
whether: (A) It was correctly kept or filtered, (B) It
was incorrectly kept or filtered, or (C) It is ambigu-
ous or borderline. These are scored as: A = 1.0,
B = 0.0, C = 0.5.

Validating expert alignment scoring. Annota-
tors are shown the alignment criteria and the fil-
tered, scored claims from Stage 2. We define direc-
tion as the alignment score category (high, neutral,
low), and magnitude as the exact score (e.g., 0.1 vs.
0.3 for low alignment).

Annotators evaluate each score as: (A) Fully
accurate – an expert would agree with the score;
correct direction and magnitude, (B) Partially ac-
curate – correct direction, but magnitude off by
≤0.2, or (C) Incorrect – wrong direction and mag-
nitude off by >0.2. These are scored as: A = 1.0,
B = 0.5, C = 0.0.

Results & agreement. Table 2 reports average
accuracy at each stage across all seven T-FIX do-
mains, along with Cohen’s κ for inter-annotator
agreement. The κ scores fall in the moderate-to-
substantial agreement range, suggesting consistent
annotator judgments and supporting the validity of
our T-FIX pipeline. Domain-specific metrics are
shown in Table A2.

5 Included Datasets

T-FIX contains seven open-source datasets, span-
ning the fields of cosmology, psychology, and
medicine. To assess LLM explanations across mul-
tiple modalities, we include text, vision, and time-
series datasets. We select these seven datasets due

to the availability of domain experts willing to work
with us for these tasks.

As running T-FIX requires querying LLMs,
many of which follow a pay-as-you-go API struc-
ture, we keep the total size of our benchmark to
700 (100 per dataset) in order for T-FIX to be ac-
cessible to as many researchers as possible.

We select a subset of 100 examples from the
test set of each open-source dataset in T-FIX, and
balance this sampling across classes when possi-
ble. We provide an overview of the included open-
source datasets in Figure 4.

See Appendix C for additional details about the
motivation, task, and prompting procedure for each
dataset.

6 Experiments

After building a pipeline to evaluate the expert
alignment of an LLM explanation, we evaluate a
suite of today’s top LLMs on T-FIX to determine
how expert-aligned these models are on domain-
specific tasks.

We use the following prompting techniques as
baselines to generate explanations for each dataset
in T-FIX.

1. Vanilla: The LLM is prompted to generate an
explanation along with its answer, without any
additional guidance or reasoning structure.

2. Chain-of-Thought (CoT): The LLM is
prompted to reason step-by-step through in-
termediate steps before answering, supporting
more accurate responses on complex, multi-
step tasks.

3. Socratic Prompting: The LLM is instructed
to question its own reasoning, encouraging
reflection and the surfacing of uncertainties or
assumptions.

4. Subquestion Decomposition: The LLM is
guided to break down a complex task into sim-
pler subquestions, answer them individually,
and then synthesize a final response.

Domain-specific prompts are detailed in Ap-
pendix C, with templates for the above prompting
strategies in Figure A5.

Results for GPT-4o, GPT-o1, Gemini-2.0-Flash,
and Claude-3.5-Sonnet3 are shown in Table 3.

3We only select LLMs with vision support and context win-
dows long enough to accommodate our time-series datasets.
All models are accessed in May 2025.



Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholecystectomy Cardiac Sepsis

GPT-4o

Vanilla 0.421 0.877 0.629 0.597 0.295 0.533 0.545
Chain-of-Thought 0.390 0.859 0.625 0.639 0.338 0.564 0.532
Socratic Prompting 0.412 0.859 0.596 0.612 0.369 0.569 0.539
SubQ Decomposition 0.354 0.881 0.596 0.531 0.358 0.519 0.563

o1

Vanilla 0.616 0.778 0.615 0.609 0.443 0.501 0.515
Chain-of-Thought 0.595 0.766 0.620 0.658 0.473 0.481 0.552
Socratic Prompting 0.503 0.782 0.555 0.467 0.456 0.449 0.578
SubQ Decomposition 0.491 0.805 0.536 0.545 0.409 0.473 0.576

Gemini-2.0-Flash

Vanilla 0.515 0.811 0.618 0.600 0.407 0.529 0.566
Chain-of-Thought 0.507 0.815 0.569 0.566 0.376 0.553 0.578
Socratic Prompting 0.281 0.815 0.559 0.554 0.394 0.475 0.581
SubQ Decomposition 0.405 0.789 0.566 0.520 0.393 0.494 0.584

Claude-3.5-Sonnet

Vanilla 0.710 0.761 0.634 0.642 0.264 0.565 0.611
Chain-of-Thought 0.688 0.776 0.639 0.622 0.286 0.538 0.584
Socratic Prompting 0.698 0.764 0.590 0.580 0.292 0.549 0.592
SubQ Decomposition 0.628 0.754 0.631 0.617 0.271 0.555 0.584

Table 3: Evaluating top LLMs on T-FIX. We report the average expert alignment score across all examples in the
dataset. Corresponding accuracies are in Table A1 and baseline prompting strategies are described in Section 6.

7 Analysis

In this section, we analyze how LLMs distribute
reasoning across expert criteria and whether higher
task accuracy indicates better expert alignment.

7.1 Coverage of Expert Alignment Criteria

Section 3 describes our pipeline for measuring the
proportion of expert-aligned claims in LLM expla-
nations. We now examine a complementary ques-
tion: How many expert alignment criteria does an
LLM consider across its explanations?

A single gold-standard explanation rarely re-
quires reasoning over all expert criteria; most high-
quality explanations reference only 3–5. Thus, as-
sessing coverage at the question level is not mean-
ingful. Instead, we analyze coverage at the dataset
level – whether different prompting strategies lead
to a broader utilization of expert criteria across all
questions within a domain.

Figure 5 presents the Shannon entropy of GPT-
4o’s covered expert criteria in each domain. We
observe a correlation between entropy and perfor-
mance: domains where GPT-4o underperforms
(e.g., Cholecystectomy, Supernova) show lower
entropy, indicating limited criteria coverage. In
contrast, well-performing domains (e.g., Politeness,
Sepsis) exhibit more uniform coverage, equally tak-

ing into account all expert criteria.

This suggests that LLMs that reason uniformly
over expert alignment criteria perform better –
a promising insight for future work in prompting
or training models to incorporate a broader range
of expert reasoning.

7.2 Expert-Alignment vs. Accuracy

T-FIX focuses on evaluating explanation quality,
but we are also interested in understanding the rela-
tionship between expert alignment and prediction
accuracy. Specifically, we ask: Does higher answer
accuracy correspond to stronger expert alignment?

Figure 6 shows the Pearson correlation of ex-
pert alignment (see Table A3) with accuracy (see
Table A1) for each domain, averaged across mod-
els. In some domains with higher performance,
like Cholecystectomy and Emotion, we do observe
higher expert alignment as well. However, the over-
all correlation is weak across domains.

The heatmap suggests today’s high-performing
LLMs do not appear to rely on expert reason-
ing. Future research is needed to explore whether
aligning model reasoning with expert criteria – via
training objectives or prompting – can improve
downstream performance.
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Flash, and Claude-3.5-Sonnet. Red indicates positive
correlation, blue is negative, gray is no correlation.

8 Related Work

Evaluating LLM Explanations. Common ex-
planation methods for LLMs include feature attri-
bution (e.g., LIME, SHAP (Ribeiro et al., 2016;
Lundberg and Lee, 2017)), counterfactuals, and
self-generated explanations (Im et al., 2023; Zhao
et al., 2023). Some models are also trained to pro-
duce human-readable justifications (Camburu et al.,
2018). To assess explanation quality and utility,
recent work highlights criteria such as faithfulness
(alignment with the model’s reasoning) and plau-
sibility (how convincing it is to humans) (Jacovi
and Goldberg, 2020; Zhou et al., 2021; Agarwal
et al., 2024). Human studies show mixed outcomes:
explanations sometimes aid understanding (Hase
and Bansal, 2020; Bansal et al., 2021), but can also

offer little value or cause over-trust (Wang et al.,
2023). A promising alternative is to use LLMs
as automatic judges of explanation quality (Zheng
et al., 2023; Chen et al., 2024), providing a scal-
able substitute for expensive human evaluation; we
adopt this approach in T-FIX.

Domain & Expert Alignment Concept-based
models constrain parts of the network to predict
high-level, human-defined concepts, enabling in-
corporation of domain knowledge into final pre-
dictions (Koh et al., 2020). Extensions of concept
bottlenecks and related methods aim to align latent
representations with semantically meaningful fea-
tures (Kim et al., 2018; Chen et al., 2020; Ghorbani
et al., 2019), potentially grouped for expert inter-
pretability (Jin et al., 2024). In NLP, integrating
human knowledge has included collecting human-
written explanation datasets to train models (Cam-
buru et al., 2018) and using learned explanations
to guide predictions (Bhatt et al., 2020). To our
knowledge, no prior work explicitly evaluates text
explanations for expert alignment like T-FIX.

9 Conclusion

We introduce T-FIX, the first benchmark designed
to evaluate LLM explanations for expert alignment
across seven knowledge-intensive domains. Our
analysis reveals that today’s models struggle to
generate explanations that experts would rely on,
highlighting a critical area for improvement.

Future work may include exploring instruction-
tuning LLMs to generate explanations with strong
expert alignment, extending T-FIX to additional
domains, and Human-Computer Interaction studies
exploring how expert-aligned explanations affect
real-world decision-making by practitioners.



Limitations

As with any LLM-based system, the quality of
the outputs is dependent on the input prompt. T-
FIX is no exception – though we spend a signifi-
cant amount of time analyzing outputs and prompt
iterating, we do a finite amount of prompt itera-
tion. There is a chance our benchmark could be
marginally improved with additional prompt iter-
ation. We hope the issue of prompt dependency
diminishes with future models that are more robust
and less susceptible to tiny prompt ablations.

While our evaluation pipeline currently uses
GPT-4o for scoring, it is model-agnostic by design,
and we encourage future work to apply or adapt the
pipeline with other LLMs to improve robustness
and reduce evaluator-model entanglement.

For pipeline validation, we conduct a user study
where we annotate 35 examples. Though the an-
notation results on this subset suggest our pipeline
is accurate, this work could have benefited from
a larger and more robust annotation study. Future
work should also involve domain experts vetting
the pipeline in addition to recruited annotators.

In addition, we only have one expert to vali-
date the expert alignment criteria for each domain.
Though our usage of a deep research LLM min-
imizes over-reliance on a single domain expert,
multiple experts would have been better to create
the expert criteria. We were constrained by domain
experts eager and available to collaborate with us.

Our experiments focus on a set of four models
and four prompting strategies, and including addi-
tional models and strategies could provide a more
comprehensive set of baseline results. Though
many other high-performing LLMs and prompting
techniques exist as of May 2025, we are conscious
of budget and the environmental impact of running
multiple experiments using T-FIX.

Ethical Considerations

Using LLMs in the domains we describe in T-
FIX, especially those relating to medicine, poses a
unique set of risks and challenges. We do not advo-
cate that LLMs should replace domain experts in
these tasks; rather, T-FIX should serve as a step to-
wards experts being able to use LLMs in a reliable
and trustworthy way.

Additionally, LLMs are constantly changing, es-
pecially those that are company-owned and not
open-source. This poses potential issues relating to
the reproducibility of our baseline results as time

progresses and advances are made.
Lastly, nearly all LLMs contain biases – some

harmful – that may propagate up in a system built
off of these models. All users of T-FIX must be
conscious of this risk.
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A Extending T-FIX to a New Domain

Though T-FIX covers a wide range of knowledge-
intensive settings, it can easily be extended to addi-
tional domains.

A key contribution of the T-FIX benchmark is
the framework: we create a pipeline to score any
free-form text explanation for expert alignment
given a set of expert criteria. Additionally, we
iterate extensively on all our prompt templates to
ensure all T-FIX users need to do is input their task-
specific details and perform no additional prompt
engineering for good results.

To add a new domain to T-FIX, we advise you
to follow these steps:

1. Generate criteria: Use the deep research
prompt template shown in Figure A4 to gener-
ate a list of expert alignment criteria for your
domain. Optionally, have a domain expert vet
the generated criteria.

2. Modify prompts: Modify the prompt tem-
plates outlined in Figure A1, Figure A2, and
Figure A3 with your task description, few-
shot examples, and generated expert criteria.

3. Run T-FIX: Plug in your prompts for each
stage of the pipeline and run T-FIX on your
dataset!

We encourage you to contact the authors of this
work if you need additional assistance setting up
your custom domain.

B Prompts for T-FIX Pipeline

We show the prompts for Stage 1, 2, and 3 in Fig-
ure A1, Figure A2, and Figure A3, respectively.
These prompts show a high-level template that was
used by all domains. In practice, authors iterated
multiple times on each domain’s prompts, experi-
menting with the instruction wording and few-shot
examples that yielded the best possible results.

C T-FIX Datasets: Additional Details

C.1 Mass Maps

Task. The goal is to predict two cosmological
parameters—Ωm and σ8—from a weak lensing
map (or known as mass maps) (Abbott et al., 2022).
These parameters characterize the early state of
the universe. Weak lensing maps can be obtained
through precise measurement of galaxies (Jeffrey
et al., 2021; Gatti et al., 2021), but it is not yet

known how to characterize Ωm and σ8. There are
machine learning models trained to predict Ωm and
σ8 (Ribli et al., 2019; Matilla et al., 2020; Fluri
et al., 2022), as well as interpretable models that
attempt to find relations between interpretable fea-
tures voids and clusters and Ωm and σ8 (You et al.,
2025). We use data from CosmoGrid (Kacprzak
et al., 2023), where inputs are single-channel, noise-
less weak lensing maps of size (66, 66), and out-
puts are two continuous values corresponding to
Ωm and σ8.

Data Selection & Preprocessing. We randomly
sampled 100 examples from the MassMaps test set.
To ensure compatibility with LLMs like GPT-4o,
which operate on a 32×32 patch size, we upsam-
pled each image by a factor of 11 to preserve spatial
detail and avoid patch-level compression. Instead
of raw pixel values, we applied a colormap based
on expert-defined intensity thresholds used to iden-
tify key cosmological features such as voids and
clusters. Pixel intensities were scaled by standard
deviations to emphasize meaningful variation. We
found that larger, visually enhanced inputs reduced
refusal rates from LLMs and encouraged more con-
sistent responses.

Explanation Prompt. Figure A6 shows the
prompt used to generate LLM explanations
for predicting Ωm and σ8. We replace
[BASELINE_PROMPT] with one of four prompt-
ing strategies shown in Figure A5. The prompt
includes a description of how pixel values are
mapped to colors, as well as the valid ranges for
Ωm and σ8. Without this range, models tend to
default to common values (e.g., 0.3 for Ωm, 0.8 for
σ8), reducing response variability.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Lensing Peak (Cluster) Abundance: High peak count
→ higher σ8; clumpy halos more common.

2. Void Size and Frequency: Large, frequent voids →
lower Ωm; less overall matter.

3. Filament Thickness and Sharpness: Thick, sharp fila-
ments track higher σ8; thin indicates lower.

4. Fine-Scale Clumpiness: Fine graininess signifies high
σ8; smooth map implies lower.

5. Connectivity of the Cosmic Web: Interconnected web
suggests higher Ωm; isolated clumps imply lower.

6. Density Contrast Extremes: Strong density contrast
denotes high σ8; muted contrast lower.



Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholecystectomy Cardiac Sepsis

GPT-4o

Vanilla 0.039∗ 0.103 0.916∗ 0.259 0.075∗ 0.567 0.657
Chain-of-Thought 0.044∗ 0.093 0.824∗ 0.286 0.103∗ 0.460 0.714
Socratic Prompting 0.044∗ 0.127 0.829∗ 0.277 0.115∗ 0.462 0.657
SubQ Decomposition 0.049∗ 0.118 0.837∗ 0.304 0.115∗ 0.485 0.657

o1

Vanilla 0.044∗ 0.170 0.784∗ 0.304 0.194∗ 0.656 0.752
Chain-of-Thought 0.045∗ 0.146 0.818∗ 0.339 0.177∗ 0.685 0.750
Socratic Prompting 0.042∗ 0.155 0.793∗ 0.348 0.155∗ 0.646 0.755
SubQ Decomposition 0.044∗ 0.147 0.818∗ 0.321 0.138∗ 0.695 0.780

Gemini-2.0-Flash

Vanilla 0.045∗ 0.145 0.831∗ 0.223 0.253∗ 0.577 0.654
Chain-of-Thought 0.042∗ 0.118 0.837∗ 0.232 0.255∗ 0.558 0.663
Socratic Prompting 0.041∗ 0.118 0.809∗ 0.232 0.159∗ 0.592 0.661
SubQ Decomposition 0.053∗ 0.109 0.773∗ 0.241 0.249∗ 0.562 0.688

Claude-3.5-Sonnet

Vanilla 0.053∗ 0.127 0.962∗ 0.241 0.146∗ 0.485 0.709
Chain-of-Thought 0.050∗ 0.118 1.012∗ 0.268 0.150∗ 0.538 0.735
Socratic Prompting 0.044∗ 0.118 0.998∗ 0.232 0.145∗ 0.508 0.748
SubQ Decomposition 0.050∗ 0.136 0.990∗ 0.259 0.149∗ 0.485 0.741

Table A1: Evaluating top LLMs on T-FIX. We report the average performance of the LLM across all examples in
the dataset. We report accuracy for classification tasks, and MSE for regression tasks – a (∗) indicates that the score
reported is MSE. Baseline implementations are described in Section 6.

C.2 Supernova

Task. The objective is to classify astrophysical
objects using time-series data comprising observa-
tion times (Modified Julian Dates), wavelengths
(filters), flux values, and corresponding flux uncer-
tainties. We use data from the PLAsTiCC chal-
lenge (Team et al., 2018), where the model must
predict one of 14 astrophysical classes.

Data Selection & Preprocessing. We sampled
100 examples across the Supernova train, valida-
tion, and test sets, aiming for 7–8 instances per
class to mitigate class imbalance. For rare classes
with only one test set instance, we included all
available examples from the validation and test
sets, supplementing with training samples to meet
the target count. For LLM input, we converted each
raw time series into a multivariate time-series plot:
time is on the x-axis, flux on the y-axis, error bars
denote flux uncertainty, and point colors indicate
different wavelengths.

Explanation Prompt. Figure A7 shows the
prompt used to generate explanations for clas-
sifying astronomical objects. We replace
[BASELINE_PROMPT] with one of four prompting

strategies shown in Figure A5. The prompt in-
cludes a description of the input plot as a multivari-
ate time series and provides the full list of possible
class labels to guide the model’s predictions.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Contiguous non-zero flux: Contiguous non-zero flux
segments confirm genuine astrophysical activity and
define the time windows from which transient features
should be extracted.

2. Rise–decline rates: Characteristic rise-and-decline
rates—such as the fast-rise/slow-fade morphology of
many supernovae—encode energy-release physics and
serve as strong class discriminators.

3. Photometric amplitude: Peak-to-trough photomet-
ric amplitude separates high-energy explosive events
(multi-magnitude outbursts) from low-amplitude peri-
odic or stochastic variables.

4. Event duration: Total event duration, measured
from first detection to return to baseline, distinguishes
short-lived kilonovae and superluminous SNe from
longer plateau or AGN variability phases.

5. Periodic light curves: Periodic light curves with
stable periods and distinctive Fourier amplitude- and
phase-ratios flag pulsators and eclipsing binaries rather
than one-off transients.

6. Secondary maxima: Filter-specific secondary max-
ima or shoulders in red/near-IR bands—prominent



Domain
N

generated
claims

N
aligned
claims

Claim
Decomposition

Accuracy

Relevance
Filtering

Accuracy

Expert
Alignment
Accuracy

Cohen’s κ

Cosmology

Mass Maps 66 48 0.900 0.826 0.979 0.4059
Supernova 74 62 0.950 0.892 0.903 0.4946

Psychology

Politeness 72 58 0.950 0.931 0.914 0.6604
Emotion 70 44 1.000 0.929 0.943 0.6233

Medicine

Cholecystectomy 134 92 1.000 0.851 0.902 0.4396
Cardiac 66 52 0.900 0.841 0.962 0.4845
Sepsis 108 66 0.900 0.852 0.894 0.3500

Table A2: Pipeline validation by domain. We report the mean accuracy for each stage of the pipeline and annotator
agreement – Cohen’s κ.

Prompt

You will be given a paragraph that explains <task description >. Your task is to decompose this ←↩

explanation into individual claims that are:

Atomic: Each claim should express only one clear idea or judgment.
Standalone: Each claim should be self -contained and understandable without needing to refer back to ←↩

the paragraph.
Faithful: The claims must preserve the original meaning , nuance , and tone.

Format your output as a list of claims separated by new lines. Do not include any additional text or ←↩

explanations.

Here is an example of how to format your output:
INPUT: [example]
OUTPUT: [example]

Now decompose the following paragraph into atomic , standalone claims:
INPUT:

Figure A1: Prompt Template for Stage 1: Atomic Claim Extraction

in SNeIa—are morphological features absent in most
core-collapse SNe.

7. Monotonic flux trends: Locally smooth, monotonic
flux trends across one or multiple bands (plateaus, lin-
ear decays) capture physical evolution stages and help
distinguish SNII-P, SNII-L, and related classes.

C.3 Politeness
Task. Understanding how linguistic styles, like
politeness, vary across cultures is necessary for
building better communication, translation, and
conversation-focused systems. (Holmes, 2012;
Havaldar et al., 2023b). Today’s LLMs exhibit
large amounts of cultural bias (Havaldar et al.,
2024), and understanding nuances in cultural dif-
ferences can help encourage cultural adaptation in
models. We use the holistic politeness dataset from
Havaldar et al. (2023a), which consists of conversa-
tional utterances between editors from Wikipedia

talk pages, annotated by native speakers from four
distinct cultures.

Data Selection & Preprocessing. We sample
100 examples from the data, balanced equally
across classes (rude, slightly rude, neutral, slightly
polite, polite) and languages (English, Spanish,
Japanese, Chinese).

Explanation Prompt. We show the prompt in
Figure A8. We replace “[BASELINE_PROMPT] with
one of four prompting strategies shown in Fig-
ure A5.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Honorifics and Formal Address: The presence of re-
spectful or formal address forms (e.g., “sir,” “usted,”)



Domain Claim Score (Category) Reasoning

Cosmology

Mass Maps

[Good] The prominence of red and
yellow suggests a universe with sig-
nificant matter fluctuations.

0.9 (Density Contrast
Extremes)

Aligns well with the Density Con-
trast Extremes category, describing pro-
nounced contrasts between dense and
void regions, signaling high sigma_8.

[Bad] The mix of colors, with sig-
nificant gray areas but noticeable
reds and yellows, suggests a moder-
ate Omega_m.

0.3 (Connectivity of the
Cosmic Web)

Discusses both underdense and over-
dense regions, but doesn’t specifically
discuss connectivity or the degree of
fragmentation or interconnection of the
network.

Supernova

[Good] A prominent peak followed
by a gradual decline in flux is char-
acteristic of a type Ia supernova
light curve.

1.0 (Rise–decline rates) Describes a classic feature of type Ia su-
pernovae, perfectly aligning with expert
criteria on rise-and-decline rates.

[Bad] The variability does not dis-
play a clear periodicity.

0.1 (Periodic light
curves)

Contradicts key characteristics of peri-
odic light curves; highlights absence of
periodic behavior.

Psychology

Politeness

[Good] The use of the phrase
“seems defective” introduces uncer-
tainty and avoids definitiveness.

0.9 (hedging & tentative
language)

The phrase utilizes tentative language
and is a clear example of hedging to
reduce the assertive strength of a state-
ment.

[Bad] The utterance is a straight-
forward description of information
from a biology textbook.

0.2 (First-Person Sub-
jectivity Markers)

Weakly aligns as it describes objective
reporting without the personal tone cen-
tral to first-person subjectivity.

Emotion

[Good] This choice of description
is likely intended to evoke a reac-
tion of fear or caution.

0.9 (Threat/Worry Lan-
guage)

The claim centers around evoking fear
or caution, which directly maps to this
category.

[Bad] The text conveys an objective
statement.

0.0 (Valence) The claim highlights an absence of emo-
tional content, which does not align with
the Valence category or any other expert
emotion categories.

Medicine

Cholecys-

[Good] The fat and fibrous tissue
overlying Calot’s triangle has been
fully excised, exposing only two
tubular structures.

High (Complete Trian-
gle Clearance)

Precisely describes complete clearance
of Calot’s triangle, perfectly matching
expert criteria.

tectomy [Bad] The cystic plate is not visible
due to dense adhesions, making the
gallbladder-liver plane indistinct.

Low (Cystic Plate Visi-
bility)

Describes failure to visualize the cystic
plate, opposite of the criterion, leading
to low alignment.

Cardiac

[Good] The irregularity in the ECG
could indicate a dangerous arrhyth-
mia, such as ventricular tachycardia
or fibrillation.

0.9 (Ventricular Tach-
yarrhythmias)

Directly references hallmark arrhyth-
mias like ventricular tachycardia/fibril-
lation, key indicators in the category.

[Bad] A skin lesion of the scalp is
a condition not directly related to
cardiac function.

0.2 (Critical Illness –
Sepsis/Shock)

Potential weak connection if interpreted
as infection, but lacks explicit signs of
sepsis/shock.

Sepsis

[Good] Fever and high heart rate
are potential signs of sepsis.

1.0 (SIRS Positivity) References two SIRS criteria; strong and
direct alignment with early sepsis identi-
fication guidelines.

[Bad] The patient’s lab results show
an increased platelet count.

0.2 (SOFA Score In-
crease)

SOFA score focuses on low platelet
counts; increased count contradicts the
criterion.

Table A3: Expert-aligned claims (good and bad) across all T-FIX domains, with corresponding alignment scores
and provided reasoning.



Prompt

You will be given [description of input , output , and claim]

A claim is relevant if and only if:
(1) It is supported by the content of the input (i.e., it does not hallucinate or speculate beyond ←↩

what is said).
(2) It helps explain why <task description >.

Return your answer as:
Relevance: <Yes/No>
Reasoning: <A brief explanation of your judgment , pointing to specific support or lack thereof >

Here are some examples:

[Example 1]
[Example 2]
[Example 3]

Now , determine whether the following claim is relevant to the given XXX:
Input:
Output:
Claim:

Figure A2: Prompt Template for Stage 2: Relevancy Filtering

signals politeness by expressing deference to the
hearer’s status or social distance.

2. Courteous Politeness Markers: Words such as
“please,” “kindly,” or their multilingual variants soften
requests and reflect courteous intent.

3. Gratitude Expressions: Use of expressions like “thank
you,” “thanks,” or “I appreciate it” signals recognition
of the other’s contribution and positive face.

4. Apologies and Acknowledgment of Fault: Phrases
such as “sorry” or “I apologize” express humility and
repair social breaches, marking a clear politeness strat-
egy.

5. Indirect and Modal Requests: Requests using modal
verbs (“could you,” “would you”) or softening cues like
“by the way” reduce imposition and signal respect for
the hearer’s autonomy.

6. Hedging and Tentative Language: Words like “I
think,” “maybe,” or “usually” lower assertion strength
and make statements more negotiable, reflecting inter-
personal sensitivity.

7. Inclusive Pronouns and Group-Oriented Phrasing:
Use of “we,” “our,” or “together” expresses solidarity
and reduces hierarchical distance in requests or cri-
tiques.

8. Greeting and Interaction Initiation: Opening with a
salutation (“hi,” “hello”) creates a cooperative tone and
frames the conversation positively.

9. Compliments and Praise: Positive evaluations (“great,”
“awesome,” “neat”) attend to the hearer’s positive face
and foster a friendly environment.

10. Softened Disagreement or Face-Saving Critique:
When disagreeing, the use of softeners, partial agree-
ments, or concern for clarity preserves the hearer’s dig-
nity.

11. Urgency or Immediacy of Language: Utterances em-
phasizing emergency or speed (“asap,” “immediately”)
can heighten perceived imposition and reduce politeness
if not softened.

12. Avoidance of Profanity or Negative Emotion: The
presence of strong negative words or swearing is a key
indicator of rudeness and face threat.

13. Bluntness and Direct Commands: Requests lacking
modal verbs or mitigation (“Do this”) are perceived as
less polite due to their imperative structure.

14. Empathy or Emotional Support: Recognizing the
hearer’s emotional context or challenges is a politeness
strategy of concern and goodwill.

15. First-Person Subjectivity Markers: Statements that
begin with “I think,” “I feel,” or “In my view” convey
humility and subjectivity, reducing imposition.

16. Second Person Responsibility or Engagement: Sen-
tences starting with “you” or directly addressing the
hearer can either signal engagement or come across as
accusatory, depending on context and tone.

17. Questions as Indirect Strategies: Questions (“what do
you think?” or “could you clarify?”) reduce imposition
by inviting rather than demanding input.

18. Discourse Management with Markers: Use of dis-
course markers like “so,” “then,” “but” organizes conver-
sation flow and may help manage face needs in conflict
or negotiation.

19. Ingroup Language and Informality: Use of group-
identifying slang or casual expressions (“mate,” “dude,”
“bro”) may foster solidarity or seem disrespectful, de-
pending on relational norms.

C.4 Emotion

Task. Understanding and classifying emotion is
important for tasks like therapy, mental health di-
agnoses, etc. (Denzin, 1984). Emotion is often
expressed implicitly, and understanding such cues
can also aid in building LLM systems that han-
dle implied language understanding well (Havaldar
et al., 2025). We use the GoEmotions dataset from
Demszky et al. (2020), consisting of Reddit com-



Prompt

You will be given <task description + expert categories description >

Your task is as follows:
1. Determine which expert category is most aligned with the claim.
2. Rate how strongly the category aligns with the claim on a scale of 0-1 (0 being lowest , 1 being ←↩

highest. Use increments of 0.1).

Return your answer as:
Category: <category >
Category Alignment Rating: <rating >
Reasoning: <A brief explanation of why you selected the chosen category and why you judged the ←↩

alignment rating as you did.>

-----
Expert categories:
[list of categories and their descriptions]
-----

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Now , determine the category and alignment rating for the following claim:
Claim:

Figure A3: Prompt Template for Stage 3: Alignment Scoring

ments that have been human-annotated for one of
27 emotions (or neutral, if no emotion is present).

Data Selection & Preprocessing. We sample
100 examples from the data, balanced equally
across 28 emotion classes, including neutral. We
additionally ensure the comment is over 20 charac-
ters, to remove noisy data points and ensure each
comment contains enough information for the LLM
to make an accurate classification.

Explanation Prompt. We show the prompt in
Figure A9. We replace “[BASELINE_PROMPT] with
one of four prompting strategies shown in Fig-
ure A5.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Valence: Decide if the overall tone is pleasant or un-
pleasant; positive tones suggest joy or admiration, nega-
tive tones suggest sadness or anger.

2. Arousal: Gauge how energized the wording is—calm
phrasing implies low arousal emotions, intense phrasing
implies high arousal emotions.

3. Emotion Words & Emojis: Look for direct emotion
terms or emoticons that explicitly name the feeling.

4. Expressive Punctuation: Multiple exclamation marks,
ALL-CAPS, or stretched spellings signal higher emo-
tional intensity.

5. Humor/Laughter Markers: Tokens like “haha,” “lol,”
or laughing emojis reliably indicate amusement.

6. Confusion Phrases: Statements such as “I don’t get it”
clearly mark confusion.

7. Curiosity Questions: Genuine information-seeking
phrases (“I wonder. . . ”, “why is. . . ?”) point to curiosity.

8. Surprise Exclamations: Reactions of astonishment
(“No way!”, “I can’t believe it!”) denote surprise.

9. Threat/Worry Language: References to danger or fear
(“I’m scared,” “terrifying”) signal fear or nervousness.

10. Loss or Let-Down Words: Mentions of loss or disap-
pointment cue sadness, disappointment, or grief.

11. Other-Blame Statements: Assigning fault to someone
else for a bad outcome suggests anger or disapproval.

12. Self-Blame & Apologies: Admitting fault and saying
“I’m sorry” marks remorse.

13. Aversion Terms: Words like “gross,” “nasty,” or “dis-
gusting” point to disgust.

14. Praise & Compliments: Positive evaluations of some-
one’s actions show admiration or approval.

15. Gratitude Expressions: Phrases such as “thanks” or
“much appreciated” indicate gratitude.

16. Affection & Care Words: Loving or nurturing lan-
guage (“love this,” “sending hugs”) signals love or car-
ing.

17. Self-Credit Statements: Boasting about one’s own
success (“I nailed it”) signals pride.

18. Relief Indicators: Release phrases like “phew,” “finally
over,” or “what a relief” mark relief after stress ends.

C.5 Laparoscopic Cholecystectomy Surgery.

Task. The task is to identify the safe and un-
safe regions for incision. We used the open-
source subset of data from (Madani et al.,
2022), which consists of surgeon-annotated im-
ages taken from video frames from the M2CAI16
workflow challenge (Stauder et al., 2016) and



Prompt

You are an expert in <domain name >. You have a deep understanding of this subject.
Your task is to behave like an <domain expert > and identify which criteria are important to consider ←↩

for the following task:

Task description:
Input:
Output:

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Study these examples and fully understand the task. Now , research the field of <domain name > in order ←↩

to determine a list of criteria that an expert <domain expert > would utilize if they were ←↩

performing the above task.

Your output should be a list of expert criteria , each 1 sentence long , and citations from reputable ←↩

academic sources to support each criteria. Feel free to have as many expert criteria as you deem ←↩

necessary. The criteria should be clear , succinct and non -overlapping with each other. [Include ←↩

any domain -specific information about the expert criteria]

Figure A4: Deep Research Prompt Template.

Prompt

VANILLA
In addition to the answer , please provide 3-5 sentences explaining why you gave the answer you did.

CHAIN -OF-THOUGHT
To come up with the correct answer , think step -by-step. You should walk through each step in your ←↩

reasoning process and explain how you arrived at the answer. Describe your step -by-step reasoning←↩

in 3-5 sentences. This paragraph will serve as the explanation for your answer.

SOCRATIC
To come up with the correct answer , have a conversation with yourself. Pinpoint what you need to know ,←↩

ask critical questions , and constantly challenge your understanding of the field. Describe this ←↩

question -and -answer journey in 3-5 sentences. This paragraph will serve as the explanation for ←↩

your answer.

SUBQUESTION DECOMPOSITION
To come up with the correct answer , determine all of the subquestions you must answer. Start with the ←↩

easiest subquestion , answer it, and then use that subquestion and answer to tackle the next ←↩

subquestion. Describe your subquestion decomposition and answers in 3-5 sentences. This paragraph←↩

will serve as the explanation for your answer.

Figure A5: Baseline Prompting Strategies.

Cholec80 (Twinanda et al., 2016) datasets. This
consists of 1015 surgeon-annotated images.

Data Selection & Preprocessing. We selected
the first 100 items from the test set where the safe
and unsafe regions were of nontrivial area. Each
item has three components: an image of dimen-
sions 640 pixels wide by 360 pixels high, a binary
mask of the safe regions of the same dimensions,
and a binary mask of the unsafe regions of the same
dimensions.

To convert the task into a form easily solvable by
the available APIs, our objective was to have the
LLM output a small list of numbers that identify
the safe and unsafe regions. This is achieved by
using square grids of size 40 to discretize each of

the safe and unsafe masks, separating them into
144 = (640/40)× (360/40) disjoint regions. One
can then use an integer inclusively ranging from 0
to 143 to uniquely identify these patches. The LLM
was to then output two lists with numbers from this
range: a “safe list” that denotes its prediction of
the safe region, and an “unsafe list” predicting the
unsafe region.

Explanation Prompt. We show the prompt
in Figure A10. We replace [BASELINE_PROMPT]
with one of four prompting strategies shown in
Figure A5.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:



Prompt

You are an expert cosmologist.
You will be provided with a simulated noisless weak lensing map ,

Your task is to analyze the weak lensing map given , identify relevant cosmological structures , and ←↩

make predictions for Omega_m and sigma_8.
Each weak lensing map contains spatial distribution of matter density in a universe. The weak lensing ←↩

map provided is simulated and noiseless.
Omega_m captures the average energy density of all matter in the universe (relative to the total ←↩

energy density which includes radiation and dark energy).
sigma_8 describes the fluctuation of matter distribution.

When you analyze the weak lensing map image , note that the number is below 0 if it shows up as between←↩

gray and blue , and 0 is gray , and between 0 and 2.9 is between gray and red , and above 2.9 is ←↩

yellow. The numbers are in standard deviations of the mass map.

Omega_m 's value can be between 0.1 ~ 0.5, and sigma_8 's value can be between 0.4 ~ 1.4.
Note that the weak lensing map given is a simulated weak lensing map , which can have Omega_m and ←↩

sigma_8 values of all kinds.

[BASELINE_PROMPT]

The provided image is the weak lensing mass map for you to predict the cosmological parameters for.
Your response should be 2 lines , formatted as follows (without extra information):
Explanation: <explanation and reasoning , as described above , 3-5 sentences >
Prediction: Omega_m: <prediction for Omega_m , between 0.1 ~ 0.5, based on this weak lensing map >, ←↩

sigma_8: <prediction for sigma_8 , between 0.4 ~ 1.4, based on this weak lensing map >

Figure A6: MassMaps Explanation Prompt

1. Calot’s triangle cleared - Hepatocystic triangle must be
fully cleared of fat/fibrosis so that its boundaries are
unmistakable.

2. Cystic plate exposed - The lower third of the gallbladder
must be dissected off the liver to reveal the shiny cystic
plate and ensure the correct dissection plane.

3. Only two structures visible - Only the cystic duct and
cystic artery should be seen entering the gallbladder
before any clipping or cutting.

4. Above the R4U line - Dissection must remain cephalad
to an imaginary line from Rouviere’s sulcus to liver
segment IV to avoid the common bile duct.

5. Safe distance from common bile duct - There should be
sufficient distance between the common bile duct and
the gallbladder wall to ensure safe dissection.

6. Infundibulum start point - Dissection should begin at the
gallbladder infundibulum-cystic duct junction to stay in
safe tissue planes.

7. Subserosal plane stay - When separating the gallbladder
from the liver, stay in the avascular subserosal cleavage
plane under the serosal fat layer.

8. Cystic lymph node guide - Identify the cystic lymph
node and clip the artery on the gallbladder side of the
node to avoid injuring the hepatic artery.

9. No division without ID - Never divide any duct or vessel
until it is unequivocally identified as the cystic structure
entering the gallbladder.

10. Inflammation bailout - If dense scarring or distorted
anatomy obscures Calot’s triangle, convert to a subtotal
"fundus-first" approach rather than blind cutting.

11. Aberrant artery caution - Preserve any large or tortuous
artery (e.g., a Moynihan’s hump) that might be mistaken
for the cystic artery.

C.6 Cardiac Arrest

Task. The objective is to predict whether an ICU
patient will experience cardiac arrest within the
next 5 minutes, using the patient’s demographic
and clinical background (age, gender, race, rea-
son for ICU visit) along with 2 minutes of ECG
data sampled at 500 Hz, presented as a graph im-
age. This framing aligns with cardiology litera-
ture, which suggests that short ECG windows (30
seconds to a few minutes) are sufficient for reli-
able prediction (Nussinovitch et al., 2011). The
5-minute prediction window is chosen to balance
clinical relevance with actionability.

Data Selection & Preprocessing. We use ECG
and visit data from the open-source Multimodal
Clinical Monitoring in the Emergency Department
(MC-MED) Dataset (Kansal et al., 2025). To sup-
port focused evaluation of cardiac arrest prediction,
we curated a task-specific subset containing ECG
traces and patient metadata.

The data curation pipeline proceeded as follows.
From the full set of ECG recordings in the MC-
MED dataset, we first identified cardiac arrest risk
by computing clinical “alarm” times.

Prior work shows that vital sign abnormalities
are predictive of outcomes (Candel et al., 2022;
Chen et al., 2023). We defined an alarm at any
timestamp where three or more of the following
vital signs were outside normal range within a two-



Prompt

What is the astrophysical classification of the following time series? Here are the possible labels ←↩

you can use: RR-Lyrae (RRL), peculiar type Ia supernova (SNIa -91bg), type Ia supernova (SNIa), ←↩

superluminous supernova (SLSN -I), type II supernova (SNII), microlens -single (mu-Lens -Single), ←↩

eclipsing binary (EB), M-dwarf , kilonova (KN), tidal disruption event (TDE), peculiar type Ia ←↩

supernova (SNIax), type Ibc supernova (SNIbc), Mira variable , and active galactic nuclei (AGN).

Each input is a multivariate time series visualized as a scatter plot image. The x-axis represents ←↩

time , and the y-axis represents the flux measurement value. Each point corresponds to an ←↩

observation at a specific timestamp and wavelength. Different wavelengths are color -coded , and ←↩

observational uncertainty is shown using vertical error bars.

Even if the classification is uncertain or ambiguous , select the most likely label based on the ←↩

observed visual patterns and provide a brief explanation that justifies your choice.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <astrophysical classification label >
Explanation: <explanation , as described above >

Here is the time series data for you to classify.

Figure A7: Supernova Explanation Prompt

Prompt

What is the politeness of the following utterance on a scale of 1-5? Use the following scale:
1: extremely rude
2: somewhat rude
3: neutral
4: somewhat polite
5: extremely polite

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Rating: <politeness rating >
Explanation: <explanation , as described above >

Utterance:

Figure A8: Politeness Explanation Prompt

minute window—a condition known clinically as
decompensation:

• Heart rate (HR): < 40 or > 130 bpm

• Respiratory rate (RR): < 8 or > 30 breaths/min

• Oxygen saturation (SpO2): < 90%

• Mean arterial pressure (MAP): < 65 or > 120
mmHg

Each example was labeled ’Yes’ if an alarm was
present, and ’No’ otherwise. For positive cases,
we sampled a random cutoff time 1–300 seconds
before the alarm and extracted the preceding 2 min-
utes of ECG data. For negative cases, we used
the first 2 minutes of ECG data. We also added
patient metadata—age, gender, race, and ICU ad-
mission reason—using information from the MC-
MED visit records. To ensure diversity, each exam-

ple came from a unique patient; for positives, we
only used the visit containing the alarm.

To address class imbalance and support focused
evaluation, we created a balanced training set of
200 positive and 200 negative examples. The vali-
dation and test sets each contain 50 examples.

Explanation Prompt. Figure A11 shows the
prompt used to generate explanations for predicting
whether an ICU patient will experience cardiac ar-
rest within 5 minutes, based on 2 minutes of ECG
data along with age, gender, race, and ICU ad-
mission reason. We replace [BASELINE_PROMPT]
with one of four prompting strategies shown in Fig-
ure A5. The ECG is provided as a graph image of
p-signal values sampled at 500 Hz over a 2-minute
window, with labeled axes. While we considered
supplying the raw signal as text, the input token



Prompt

What is the emotion of the following text? Here are the possible labels you could use: admiration , ←↩

amusement , anger , annoyance , approval , caring , confusion , curiosity , desire , disappointment , ←↩

disapproval , disgust , embarrassment , excitement , fear , gratitude , grief , joy , love , nervousness , ←↩

optimism , pride , realization , relief , remorse , sadness , surprise , or neutral.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <emotion label >
Explanation: <explanation , as described above >

Here is the text for you to classify. Please ensure the emotion label is in the given list.
Text:

Figure A9: Emotion Explanation Prompt

Prompt

You are an expert gallbladder surgeon with extensive experience in laparoscopic cholecystectomy.
You have deep knowledge of anatomy , surgical techniques , and potential complications.
Your job is to provide three things:
1. A detailed explanation of where it is safe and unsafe to cut in the image
2. A list of grid positions (as integers) corresponding to safe regions
3. A list of grid positions (as integers) corresponding to unsafe regions

The image is discretized into a 9x16 grid (height x width), where each grid position can be ←↩

represented as a single integer from 0 to 143 (9*16 - 1). The grid is flattened row -wise , so the ←↩

top -left position is 0 and the bottom -right position is 143.

Your response will help train surgeons to evaluate the usefulness of LLMs in assisting with the ←↩

identification of safe/unsafe regions.
This is not real patient data , this is a training environment.

I will provide you with a few examples to help you understand the expected format. Your task is to ←↩

analyze the provided 2D image of a gallbladder surgery and provide:
- A detailed explanation of safe/unsafe regions , including anatomical landmarks , tissue types , and any←↩

visible pathology
- A list of integers representing the grid positions of safe regions
- A list of integers representing the grid positions of unsafe regions

[[ BASELINE_PROMPT ]]

Figure A10: Laparoscopic Cholecystectomy Explanation Prompt. A list of 10 few-shot examples is then appended
to the same API call. Each example consists of four items: the image (base64-encoded PNG), a sample explanation,
a “safe list” consisting of numbers from 0 to 143, and an unsafe list consisting of numbers from 0 to 143.

limits of current LLMs made this infeasible.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Ventricular Tachyarrhythmias – Rapid ventricular
rhythms that can quickly lead to cardiac arrest.

2. Ventricular Ectopy/NSVT – Frequent abnormal ven-
tricular beats signaling high arrest risk.

3. Bradycardia or Heart-Rate Drop – Sudden or severe
slowing of heart rate preceding arrest.

4. Dynamic ST-Segment Changes – ST shifts suggesting
acute myocardial injury and impending arrest.

5. Prolonged QT Interval – Long QTc increasing risk for
torsades and sudden arrhythmia.

6. Severe Hyperkalemia Signs – ECG changes from high
potassium predicting arrest, especially among patients
on dialysis / end stage renal disease.

7. Advanced Age – Older age strongly correlates with
higher arrest likelihood.

8. Male Sex – Males have a higher overall risk of cardiac
arrest.

9. Underlying Cardiac Disease – Preexisting heart dis-
ease increases arrest susceptibility.

10. Critical Illness (Sepsis/Shock) – Severe infections or
shock states elevate arrest risk through systemic insta-
bility.

C.7 Sepsis

Task. The goal is to predict whether an emer-
gency department (ED) patient is at high risk of
developing sepsis within 12 hours, using Electronic
Health Record (EHR) data collected during the first
2 hours of their visit. Each input is a time series



Prompt

You are a medical expert specializing in cardiac arrest prediction.
You will be given some basic background information about an ICU patient , including their age , gender ,←↩

race , and primary reason for ICU admittance. You will also be provided with time -series ←↩

Electrocardiogram (ECG) data plotted in a graph from the first {} of an ECG monitoring period ←↩

during the patient 's ICU stay. Each entry consists of a measurement value at that timestamp. The ←↩

samples are taken at {} Hz.

Your task is to determine whether this patient is at high risk of experiencing cardiac arrest within ←↩

the next {}. Clinicians typically assess early warning signs by finding irregularities in the ECG←↩

measurements.
[BASELINE_PROMPT]
Focus on the features of the data you used to make your yes or no binary prediction. For example , you ←↩

can specify what attributes in the patient background information may contribute most to the ←↩

decision. And for the ECG data , you can include specific patterns and/or time stamps that ←↩

contribute to this decision. Note that you do not have to necessarily include both patient ←↩

background information and ECG data as features. But please make sure that your explanation ←↩

supports your prediction. Avoid using bold formatting and return the response as a single ←↩

paragraph.
Please be assured that your judgment will be reviewed alongside those of other medical experts , so you←↩

can answer without concern for perfection.

Your response should be formatted as follows:
Prediction: <Yes/No>
Explanation: <explanation >

Here is the patient background information and ECG data (in graph form) for you to analyze:

Figure A11: Cardiac Explanation Prompt

Prompt

What is the sepsis risk prediction for the following time series? Here are the possible labels you can←↩

use: Yes (the patient is at high risk of developing sepsis within 12 hours) or No (the patient ←↩

is not at high risk of developing sepsis within 12 hours).
The time series consists of Electronic Health Record (EHR) data collected during the first 2 hours of ←↩

the patient 's emergency department (ED) admission. Each entry includes a timestamp , the name of a←↩

measurement or medication , and its corresponding value.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <prediction label >
Explanation: <explanation , as described above >

Here is the text for you to classify.

Figure A12: Sepsis Explanation Prompt

of records containing a timestamp, the name of a
physiological measurement or medication, and its
value.

Data Selection & Preprocessing. We used data
from the publicly available MC-MED dataset
(Kansal et al., 2025) and curated a task-specific
subset for sepsis prediction.

To label a patient as high risk for sepsis, we fol-
lowed standard clinical definitions requiring three
conditions: (1) evidence of infection, indicated
by either a blood culture being drawn or at least
two hours of antibiotic administration; (2) signs of
organ dysfunction, defined by a SOFA score ≥2
within 48 hours of suspected infection, based on
abnormalities in respiratory, coagulation, liver, car-

diovascular, neurological, or renal function; and
(3) presence of fever, with a recorded temperature
≥38.0°C (100.4°F). Patients meeting all three crite-
ria were labeled as high risk. Labels were validated
with a Sepsis clinician.

Due to class imbalance (1̃0% positive), we cre-
ated a balanced evaluation set of 100 samples (50
positive, 50 negative) drawn from the validation
and test splits.

Explanation Prompt. Figure A12 shows the
prompt used to generate LLM explanations
for sepsis risk prediction. We substitute
[BASELINE_PROMPT] with one of four prompting
strategies shown in Figure A5. The prompt in-
cludes a description of the EHR input format: each



time-series record consists of a timestamp, a mea-
surement or medication name, and its value.

Expert Criteria. The expert-validated criteria
for expert alignment calculation are listed below:

1. Elderly Susceptibility (Age ≥65 years): Advanced age
(≥65 years) markedly increases susceptibility to rapid
sepsis progression and higher mortality after infection.

2. SIRS Positivity (≥2 Criteria): Presence of ≥2 SIRS
criteria—temperature >38◦C or <36◦C, heart rate >90
bpm, respiratory rate >20/min or PaCO2 <32 mmHg,
or WBC >12,000/µL or <4,000/µL—identifies sys-
temic inflammation consistent with early sepsis.

3. High qSOFA Score (≥2): A qSOFA score ≥2 (res-
piratory rate ≥22/min, systolic BP ≤100 mmHg, or
altered mentation) flags high risk of sepsis-related organ
dysfunction and mortality.

4. Elevated NEWS Score (≥5 points): A National Early
Warning Score (NEWS) of ≥5–7 derived from deranged
vitals predicts imminent clinical deterioration compati-
ble with sepsis.

5. Elevated Serum Lactate (≥2 mmol/L): Serum lac-
tate ≥2 mmol/L within the first 2 hours signals tissue
hypoperfusion and markedly elevates sepsis mortality
risk.

6. Elevated Shock Index (≥1.0): Shock index (heart
rate ÷ systolic BP) ≥1.0—or a rise ≥0.3 from base-
line—denotes haemodynamic instability and a high
probability of severe sepsis.

7. Sepsis-Associated Hypotension (SBP <90 mmHg or
MAP <70 mmHg, or ≥40 mmHg drop): Sepsis-
associated hypotension, defined as SBP <90 mmHg,
MAP <70 mmHg, or a ≥40 mmHg drop from baseline,
indicates progression toward septic shock.

8. SOFA Score Increase (≥2 points): An increase of
≥2 points in any SOFA component—e.g., PaO2/FiO2

<300, platelets <100×109/L, bilirubin >2 mg/dL, cre-
atinine >2 mg/dL, or GCS <12—confirms new organ
dysfunction and high sepsis risk.

9. Early Antibiotic/Culture Orders (within 2 hours):
Administration of broad-spectrum antibiotics or draw-
ing of blood cultures within the first 2 hours signifies
clinician suspicion of serious infection and should an-
chor sepsis risk assessment.
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